True or false If F(x) and G(x) are antiderivatives of f

True or false: If F(x) and G(x) are antiderivatives of f(x), then F(x)=G(x)+C

Solution

True

as Antiderivative of f(x) is F(x)

integration of f(x)dx=F(x)+c1

integ█████████ ████ █(███)█████=█(█)+████

████,█(██)=█(█)+███

██████████ █ ███ ████████ █████████████████ ████ █████████████████ ██████████████

A 5.0 g ice cube at -10 C is in a rigid, sealed contain

A 5.0 g ice cube at -10 C is in a rigid, sealed container from which all the air has been evacuated. The specific heat at constant volume of steam is 1500 J/kgK. How much heat is required to change this ice cube into steam at 170 C ?

Solution

Q = m*c*T
Q = m*Lf
Q = m*Lv

Those are the 3 equations you need.

Lv is the heat of vaporization.
Lf is the heat of fusion.
c is the specific heat per substance.

At the end, you\’re going to add up all the different Q\’s we obtain to get the total E required for this system
1st step: The ice needs to reach 0°C
Q1 = (0.005)(specific heat of ice)(0°C – (-10°C)
Q1 = (0.005)(2030)(10°C) =101.5J

2nd step: That ice is now turning to water. Need a █████████ █████████████ ███ ██████ ███████████████ █████ █████████ ██████████ █████████████
████ = ██████████ (██████████) =███████████████

██████ █████████: █████ ████████ ████ █████ ████ ████ ████████████ █████████ ███████ ████ ████████ █████████ ████████ ████████ ████████ ███ ████ ██████████ █████ █████ ████ ████████ ████████ ██ █████████
████ = ███████████(█████)(█████°███ &#███████; ███) = ████████████

███████ ████████: ████████████ ███████████ ███████████ █████████████ ██████ ████ ████████ █████████ ███████ █████████
███ = ██████████(█████████████) =████████████████

██████ ███████: ███████████████, █████████ ███████████ █████ █████ █████ █████ ████████████████████

█████ = ████████████(██████)(█████ &#█████████; ████████) =█████████

█████████ ██ = █████+████+█████+█████+█████ = ███████████████

The net operating income in the planning budget for Dec

The net operating income in the planning budget for December would be closest to:

$11,200
$12,121
$11,960
$11,400

Solution

Revenue per tenant day = $ 32.10

Total Variable expense per tenant day = $ 22.10

Contribution margin per tenant day = $ ███████████ █$ ████████████ = $ █████

█████████ █████████ █████████████ = $ ███,███████

██████ █████████████████ ██████████████ = (█,████ ██ ██) &#███████████; ████,███████ = $ ████,███████

Use the Comparison Theorem to determine whether The in

Use the Comparison Theorem to determine whether :
The integral ( from 0 to (pi/4) ) of dx/xcosx
is convergent or divergent.

Solution

Consider integral 1/x dx

The answer is ln x = ln (pi/4) – ln(0) . As ln 0 is not defined, this integral diverges\’

Similarly consider integral -1/x dx. the answer is -ln x = ln 0-ln pi/4 hence diverges

We know

-1<co██&██;███ ██████ █████ ██

██████████████████ ██ ███████████████ ██

███&███;████████████&████;███ ███ ███&██████;█

████████ ██████████████████████

█████████ &████;███████████████ &█████;██████

█████ ████████████████████ ██████████████ █████ ██████████████ ████ ████████████ █████ ███████████████ ████ ███████████████████ ████████████ █████ ███████████

██████████████ ████████████

Two capacitors, C1 4.67 F and C2 10.8 F, are connecte

Two capacitors, C1 = 4.67 F and C2 = 10.8 F, are connected in parallel, and the resulting combination is connected to a 9.00-V battery.

(a) Find the equivalent capacitance of the combination.
F

(b) Find the potential difference across each capacitor.

(c) Find the charge stored on each capacitor.

V1 =  V
V2 =  V

Solution

C1 = 4.67 F and C2 = 10.8 F,
a) Ceq = c1+ c2 = 15.47 F
b) potential difference across both is 9 v respectively, as they are connected in paral█████
███) █████████████ ███████████████ █████ ███ ███████████████████ ███ = ███
███████ ████, ███ = ███ ██ = ██████ ██ █ █ ████^█████ = ████████ ██
███████ ████ , ███ = ████ █ = █████████ ██ █ ███ ██^████ = █████ ██

Lartey Corporations cost formula for its selling and ad

Lartey Corporation\’s cost formula for its selling and administrative expense is $22,200 per month plus $27 per unit. For the month of December, the company planned for activity of 5,300 units, but the actual level of activity was 5,270 units. The actual selling and administrative expense for the month was $168,150.

The spending variance for selling and administrative expense in December would be closest to:

$3,660 F
$3,660 U
$2,850 F
$2,850 U

Solution

The spending variancefor selling and adminstrative expenses will be as follows:

Step 1: Calculation of budgeted overheads= Selling and admistrative expenses+ (Number of unitsxcost per unit) which will be calculated as follows: $22200+(27x $5300)= $ 165300.

Step 2: Calculation of bugeted overhead rate= Budgeted overhead cost/ Number of units i.e $165300/53█████= $███████

███████████ █: ███████████████████ ███ ████████████ █████████████████ ████████: █████████████ ███████████████ ███████████████████████████ ████ ███████████ █████████████████ █████ $█████████████████████=███████ ████ $████

██████████ ██: ███████████████████████ ████ ████████████████ ████████████████: ███= ████(███████████)

███= ███████(███████████) ██████████████ █████ ███████ █████ █████████(██████)= $████████ (██████████████████████)

████████████████████, ██████████ ████ ██████████ ███ ██ ████ █████████ ██ █████████ █████████████████

For the indicated region, use Gausss Law to determine t

For the indicated region, use Gauss’s Law to determine the magnitude of the electric field as a function of r the distance from the point charge. This requires drawing a picture, sketching the electric field, choosing a gaussian surface, calculating the charge enclosed by the surface and solving for the magnitude of the electric field.

Please answer four questions down below and give detailed calculated steps. Thank you very much! Provide as many details as possible please. I also attached all the information you will need to answer all four questions down below.

Xercises For Exercises 1-3, consider the system described in Example 1. For the indicated region, use Gauss\’s Law to determine the magnitude of the electric field as a function of r the distance from the point charge. This requires drawing a picture, sketching the electric field, choosing a gaussian surface, calculating the charge enclosed by the surface and solving for the magnitude of the electric field 1. The region outside of the conductor, r b 2. The region within the conducting material, a r b. You know the answer to this one is zero, but show that GausS\’s Law gives that result. 3. The region inside the conducting shell, r a 4. Consider the conducting cylinder in Example 2. Show that at points outside the conductor and very close to the surface, the formula E gives the strength of the electric field

Solution

1)

for r > b :

considering a concentric sphere of radius r (r > b) as Gaussian surface

using Gauss Law,

total flux through surface = Qinside / e0

E . A = Qinside /e0

Qinside = +Q + (-3Q) = -2Q (minus sign means field will be radially towards centre)

E ( 4 pi r^2 ) = 2Q / e0

E = Q / (2 pi e0 r^2 )

direction radially towards centre

2). a< r < b

there is charge +Q at the centre and ███████ ███ █ ████████████████████ ████████████ ███████████ ████████████ █████████████ ████ ███████
█████████████████ ██████████ ██████████ █████████ █████ █████████████ ██████ █████ █████████████ █████████ ████ ███ █████████ ████████████████

(████████████ ███████████ █████████ ██████ ████████████ ████ █████████████████)

███████ ███████ ██████████████ █████████ █████ █████████ █ (█ &████; █ &█████; ███)

██████ = ██ ██████ = █

███████████ █████████ = ██

██ = ███

████

█ &█████; █

█████ = █

██ (██ ███ ██^███ ) = █ ███ ███

███ = █ █ (███ ███ ███ ███^███ )

████ ███████████ ██████ ████ ████████████████ █████████ ██████ ███████ █████████████ ████████

The food and supplies in the flexible budget for July w

The food and supplies in the flexible budget for July would be closest to:

$27,732
$27,597
$28,060
$26,932

Solution

Flexible activity = 3,260

Hence food and supplies in fl███████████████ ██████████████ ██████████ █████ = $ ███,█████ + ($ ██████████ ███ ███,███) = $ ███,████

An automobile of mass 1500 kg moving at 25.0 ms collide

An automobile of mass 1500 kg moving at 25.0 m/s collides with a truck of mass 4500 kg a rest. The bumpers of the two vehicles lock together during the crash. Compare the force exerted by the car on the truck with that exerted by the truck on the car during the collision O 1. The force exerted by the car on the truck is bigger than that exerted by the truck on the car during the collision because the car is the active one. O 2. They are equal to each other in magnitude O 3. The force exerted by the car on the truck is bigger than that exerted by the truck on the car during the collision because the truck is at rest. O 4. The force exerted by the car on the truck is smaller than that exerted by the truck on the car during the collision because the the truck is heavier than the car. 5.The force exerted by uck on the car during the collision is zero because the uck eS

Solution

2 ) by ██████████\&#████████;██ ████████████ ██████